

Containers
Part One

Outline for Today
● Parameter Passing in C++

● On xeroxes and master copies.
● Container Types

● Holding lots of pieces of data.
● The Vector type

● Storing sequences.
● Recursion on Vectors

● More practice with sequences.

Parameter Passing in C++

Parameter Passing in C++
● By default, in C++, parameters are passed by value.

/* This function gets a copy of the integer passed
 * into it, so we only change our local copy. The
 * caller won't see any changes.
 */
void byValue(int number) {
 number = 137;
}

● You can place an ampersand after the type name to take the
parameter by reference.

/* This function takes its argument by reference, so
 * when the function returns, the int passed in will have
 * been permanently changed.
 */
void byReference(int& number) {
 number = 137;
}

Strings in C++
● In Python, Java, and JavaScript, string

variables are not the strings themselves.
They’re pointers to those strings.

● In C++, a variable of type string is an
actual, concrete, honest-to-goodness
string.

myString

w i g g l e

myString

w i g g l e

Container Types

Container Types
● A container type (also called an abstract

data type or collection class) is a data type
used to store and organize data in some form.
● These are things like arrays, lists, maps,

dictionaries, etc.
● Our next three lectures exploring collections

and how to use them appropriately.
● Later, we’ll analyze their efficiencies. For

now, let’s just focus on how to use them.

Vector

Vector

● A Vector is a collection class representing a
list of things.

● It’s similar to Java's ArrayList, JavaScript’s
arrays, and Python’s lists.

● To make a Vector, use this syntax:
Vector<type> name;

● All elements of a Vector have to have the
same type. You specify that type by placing
it in <angle brackets> after the word Vector.

Vector in Action

 /* Stanford C++ Version */
 Vector<int> v = { 1, 3, 7 };

 v += 271;

 cout << v[0] << endl;
 cout << v[v.size() - 1] << endl;

 Vector<int> first = v.subList(0, 2);
 Vector<int> last = v.subList(2);

 v.remove(0);

 """ Python Version """
 v = [1, 3, 7]

 v.append(271)

 print(v[0])
 print(v[-1])

 first = v[0:2]
 last = v[2:]

 del v[0]

 // JavaScript Version
 let v = [1, 3, 7];

 v.push(271);

 console.log(v[0]);
 console.log(v[v.length - 1]);

 let first = v.slice(0, 2);
 let last = v.slice(2);

 v.splice(0, 0);

 /* Java Version */
 List<> v = new ArrayList<Integer>();
 v.add(1); v.add(3); v.add(7);

 v.add(271);

 System.out.println(v.get(0));
 System.out.println(v.get(v.size()-1));

 List<Integer> first = v.subList(0, 2);
 List<Integer> last = v.subList(2);

 v.remove(0);

 """ Python Version """
 v = ["A", "B", "C"]

 # Counting for loop.
 for i in range(len(v)):
 print(v[i])

 # Range-based for loop.
 for elem in v:
 print(elem)

 // JavaScript Version
 let v = ["A", "B", "C"];

 // Counting for loop.
 for (let i in v) {
 console.log(v[i]);
 }

 // Range-based for loop.
 for (let elem of v) {
 console.log(elem);
 }

 /* Java Version */
 List<> v = new ArrayList<String>();
 v.add("A"); v.add("B"); v.add("C");

 /* Counting for loop. */
 for (int i = 0; i < v.size(); i++) {
 System.out.println(v[i]);
 }

 /* Range-based for loop. */
 for (String elem: v) {
 System.out.println(elem);
 }

 /* Stanford C++ Version */
 Vector<string> v = { "A", "B", "C" };

 /* Counting for loop. */
 for (int i = 0; i < v.size(); i++) {
 cout << v[i] << endl;
 }

 /* Range-based for loop. */
 for (string elem: v) {
 cout << elem << endl;
 }

To read more about the Vector and how to
use it, check out the

Stanford C++ Library Documentation

up on the course website.

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/

Objects in C++
● In Python, Java, and JavaScript, object

variables are not the objects themselves.
They’re pointers to those objects:

● In C++, a variable of object type is an
actual, concrete, honest-to-goodness
object.

myList

myList

21 1 5 1 9 2 9

21 1 5 1 9 2 9

“I’ll live forever! Once the technology is available,
“I’ll just upload my mind into the cloud.”

How people think it works:
void uploadToCloud(Mind& consciousness);

How it actually works:
void uploadToCloud(Mind consciousness);

Credit: Philip Heltweg

Time-Out for Announcements!

Sections
● Discussion sections start this week!

● Didn’t sign up by Sunday at 5PM? The signup link will
reopen on Tuesday at 5PM, and you can choose any open
section time.

● If your section time doesn’t work for you, you can switch
into any section with available space starting Tuesday at
5PM. Visit cs198.stanford.edu to do this.

● Still doesn’t work for you? Ping Neel!
● You’ll get your section assignment this Tuesday at

5:00PM.
● Each week we’ll release a set of section problems on

the course website. These are not graded, but we
recommend you read over them before your section.

YEAH Hours
● We’ll be holding special sessions called
Your Early Assignment Help Hours
(YEAH Hours) to give overviews of each
of the assignments.

● The first one is today, 3PM – 4PM in
200-034.

● These are purely optional, but
recommended if you have the bandwidth.

return;

…

…

A Question of Speed
● When working with strings or containers, pass-

by-value is slower than pass-by-reference
because of the cost of copying data.

● General principle: When passing a string or

container into a function, use pass-by-reference
unless you actually want a copy.

I a m h a p p y t o j o i n

I a m h a p p y t o j o i n

Do You Trust Me?
● Suppose you’ve written the next Great

American Novel and the single, sole copy
is stored in the variable

string myMasterpiece;

● You see a function with this signature:
void totallyNotSketchy(string& text);

● Would you make this call?
totallyNotSketchy(myMasterpiece);

Pass-by-const-Reference
● If you want to look at, but not modify, a

function parameter, pass it by const
reference:
● The “by reference” part avoids a copy.
● The “const” (constant) part means that the

function can’t change that argument.
● For example:

void proofreadLongEssay(const string& essay) {
 /* can read, but not change, the essay. */
}

What kind of
argument?

Need to change
argument?

Pass by
value!

Pass by
reference!

Pass by const
reference!

Yes!

Nope!

This is the general
convention used in C++
programming. Please feel
free to ask questions

about this over the course
of the quarter!

Start!

Number!

int
bool
double
char
…

Object!

string
Vector<int>
Stack<char>
Queue<int>

…

Recursion on Vectors

Finding the Largest Number

Finding the Largest Number
● Our goal is to write a function

int maxOf(const Vector<int>& numbers);

that takes as input a Vector<int>, then
returns the largest number in the Vector.

● We’re going to assume the Vector has at
least one element in it; otherwise, it’s not
possible to return the largest value!

● Let’s see how to do this.

Thinking Recursively
if (The problem is very simple) {
 Directly solve the problem.
 Return the solution.
} else {

 Split the problem into one or more
 smaller problems with the same
 structure as the original.
 Solve each of those smaller problems.
 Combine the results to get the overall
 solution.
 Return the overall solution.
}

These simple cases
are called base

cases.

These are the
recursive cases.

137 271 828 182

137 271 828 182

The largest element of
this Vector<int> is

either…

… the first
element of the
Vector<int>, …

… or the largest
element in this
Vector<int>.

elems[0] elems.subList(1)

elems

Summary from Today
● The Vector<T> type in C++ represents a

sequence of elements.
● Parameters in C++ are passed by value by

default. You can change that to use pass by
reference if you’d like.

● Use pass-by-const-reference for objects you
don’t intend to change.

● Each stack frame from a recursive function
gets its own copies of all the local
variables.

Your Action Items
● Read Chapter 5.1 and Chapter 5.2 of the

textbook.
● It’s all about Vector and Grid! There are some

goodies there.
● Work on Assignment 1.

● If you’re following our recommended timetable, aim
to have Debugger Warmups and Fire completed
tonight, and start working on Only Connect by
Wednesday.

● Explore the maxOf example.
● Tinker and play around with this one. See if you can

get very comfortable with how it works.

Next Time
● Lexicons, Sets, and Maps.

● Storing words.
● Storing items in No Particular Order.
● Associating items with one another.

● Fun With Words
● Simple programs + rich data = cool demos.

Appendix: Finding the max, another way.

137 271 828 182

137 271 828 182

The largest element of
this Vector<int> is

either…

… the largest
element in this
Vector<int>, …

… or the largest
element in this
Vector<int>.

elems.subList(0, elems.size() / 2)

elems

elems.subList(elems.size() / 2)

maxOf as a Tournament

31 41 59 26

31 41 59 26

31 41 59 26

(max 41) (max 59)

(max 31) (max 41) (max 59) (max 26)

(max 59)

maxOf as a Tournament
int maxOf(const Vector<int>& elems) {
 if (elems.size() == 1) {
 return elems[0];
 } else {
 int half = elems.size() / 2;

 /* First half of the elements. */
 Vector<int> left = elems.subList(0, half);

 /* Second half of the elements. */
 Vector<int> right = elems.subList(half);

 /* Biggest value in the overall list is either
 * the largest element in the first half or
 * the largest element in the second half.
 */
 return max(maxOf(left), maxOf(right));
 }
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

